Nox4 is a novel inducible source of reactive oxygen species in monocytes and macrophages and mediates oxidized low density lipoprotein-induced macrophage death.

نویسندگان

  • Chi Fung Lee
  • Mu Qiao
  • Katrin Schröder
  • Qingwei Zhao
  • Reto Asmis
چکیده

RATIONALE The enhanced formation of intracellular reactive oxygen species (ROS) induced by oxidized low-density lipoprotein (OxLDL) promotes macrophage death, a process likely to contribute to the formation of necrotic cores and the progression of atherosclerotic lesions. Yet macrophage deficiency of phagocytic NADPH oxidase (Nox2), the primary source of ROS in macrophages, does not reduce atherosclerotic lesion development in mice. This suggests an as yet unidentified NADPH oxidase may be present in macrophages and responsible for the intracellular ROS formation induced by OxLDL. OBJECTIVE The aim of this study was to identify the source of intracellular ROS involved in macrophage death. METHODS AND RESULTS Nox4 was expressed in human monocytes and mature macrophages, and was localized to the endoplasmic reticulum and to defined foci within the nucleus. Nox4 colocalized with p22(phox), and both proteins were upregulated in response to OxLDL stimulation, whereas Nox2/gp91(phox) levels remained unchanged. Induction of Nox4 expression, intracellular ROS formation and macrophage cytotoxicity induced by OxLDL were blocked by MEK1/2 inhibition, but not by inhibitors of p38-MAPK (mitogen-activated protein kinase), JNK (Jun N-terminal kinase), or JAK2 (Janus kinase 2). Small interfering RNA knockdown of Nox4 inhibited both intracellular ROS production and macrophage cytotoxicity induced by OxLDL, whereas Nox4 overexpression enhanced both OxLDL-stimulated ROS formation and macrophage death. CONCLUSIONS Nox4 is a novel source of intracellular ROS in human monocytes and macrophages. Induction of Nox4 by OxLDL is mediated by the MEK1/ERK pathway and required for OxLDL cytotoxicity in human macrophages, implicating monocytic Nox4 in atherogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Monocyte Adhesion and Migration by Nox4

We showed that metabolic disorders promote thiol oxidative stress in monocytes, priming monocytes for accelerated chemokine-induced recruitment, and accumulation at sites of vascular injury and the progression of atherosclerosis. The aim of this study was to identify both the source of reactive oxygen species (ROS) responsible for thiol oxidation in primed and dysfunctional monocytes and the mo...

متن کامل

Recombinant Human Thioredoxin-1 Protects Macrophages from Oxidized Low-Density Lipoprotein-Induced Foam Cell Formation and Cell Apoptosis

Oxidized low-density lipoprotein (ox-LDL)-induced macrophage foam cell formation and apoptosis play critical roles in the pathogenesis of atherosclerosis. Thioredoxin-1 (Trx) is an antioxidant that potently protects various cells from oxidative stress-induced cell death. However, the protective effect of Trx on ox-LDL-induced macrophage foam cell formation and apoptosis has not been studied. Th...

متن کامل

Oxidized low-density lipoprotein stimulates macrophage 18F-FDG uptake via hypoxia-inducible factor-1α activation through Nox2-dependent reactive oxygen species generation.

UNLABELLED For (18)F-FDG PET to be widely used to monitor atherosclerosis progression and therapeutic response, it is crucial to better understand how macrophage glucose metabolism is influenced by the atherosclerotic microenvironment and to elucidate the molecular mechanisms of this response. Oxidized low-density lipoprotein (oxLDL) is a key player in atherosclerotic inflammation that promotes...

متن کامل

Rspo2 suppresses CD36-mediated apoptosis in oxidized low density lipoprotein-induced macrophages

Oxidized low density lipoprotein (oxLDL)-induced apoptosis of macrophages contributes to the formation of atherosclerotic plaques. R‑spondin 2 (Rspo2), a member of the cysteine‑rich secreted proteins, has been shown to be involved in the oncogenesis of several types of cancer. It has also been found to be abundantly expressed among the four R‑spondin members in macrophages. The present study wa...

متن کامل

Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis.

AIM MicroRNAs (miRNAs) play key roles in inflammatory responses of macrophages. However, the function of miRNAs in macrophage-derived foam cell formation is unclear. Here, we investigated the role of miRNAs in macrophage-derived foam cell formation and atherosclerotic development. METHODS AND RESULTS Using quantitative reverse transcription-PCR (qRT-PCR), we found that the level of miR-155 ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 106 9  شماره 

صفحات  -

تاریخ انتشار 2010